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ABSTRACT

The purpose of this project was to create a device to facilitate computer use for physically disabled people.  Specifically, we wanted to create a mouse device that would utilize electric potentials generated by the human eye in order to control the mouse cursor on the screen.  Creating a fully working FPGA based mouse emulator with bidirectional PS/2 communication support, as well as a circuit for filtering, amplifying, and then isolating signals from an electro-oculogram were the two major blocks of our design.  This paper will cover in detail the specification and design, the verification performed to ensure correct functionality, and the cost of the project.  Finally, a quick wrap up describing accomplishments this semester, shortcomings of the project, and future work that could be done to extend and enhance it will be included.  
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1. INTRODUCTION


1.1 Purpose and Usefulness of Project

The purpose of this project is to create a device that allows people to control a computer mouse cursor solely with eye movements.  The system will be targeted for individuals who are unable to use a mouse with their hands, for physical or other reasons.  Under the assumption that computer users will be able to see the computer screen, the selection for ocular movements as a means of control is viable.


1.2	Background Information of EOG measuring process

The signal that will be used originates from the eye itself.  Intrinsic to the eye is a dipole between the cornea (front of eye) and retina (back of eye).  This corneoretinal potential can vary in strength from individual to individual, but in general is between 0.4 – 1.0 mV.  The front of the eye is positive in comparison to the back of the eye, and it is this signal which can be measured by electrodes [2].  Lateral eye movements can be obtained by placing surface electrodes directly lateral to each eye on the canthi, and vertical eye movements can be detected by placing an electrode above and below an eye, with a common reference electrode placed in the center of the forehead (see Appendix 1 for placement).  

The way the signal is measured is very simple.  Lateral eye movement will be used as an example, but the same applies for vertical movement as well.  When a subject is looking straight ahead, the electrodes on either side of the eye will read similar potentials.  When a subject glances to the right, the right electrode will read a more positive voltage while the left electrode will read a relatively negative voltage.  By amplifying the difference into distinct positive and negative voltages, we drive the rest of the circuitry and eventually move the mouse cursor.


1.3 Project Functions

The function of this project is to provide an entire system to move the mouse cursor on a computer screen solely from movements made by the user’s eyes.  Five electrodes placed upon the user’s face in the general locations designated by Appendix 1 feed input signals into signal circuitry which serve to amplify the signal from the ~.6 mV to ~5 V range.  The signals are then fed into an FPGA, which will control communication with a computer via a PS/2 male-male connector.  Output for the project is a moving mouse cursor, in directions designated by the user’s eyes, on a typical computer running the Windows operating system.


1.4	Subprojects

There are two main portions or subprojects of this project.  The first, which we have arbitrarily named “the signal circuitry,” will consist of components that will filter, amplify, and isolate the signal.  Amplification brings the potentials to readable logic levels, filtering “cleans” the noise and other involuntary muscle movements from our signal, and isolation separates the electrode signals into separate directional components.   The second subproject, which has been named the “FPGA mouse,” is a hardware mouse emulator based on the Xilinx XSA-100 Prototyping Board which will communicate with the computer via the PS/2 port, moving the cursor on the computer’s screen based on inputs from the signal circuitry. 

2.  DESIGN PROCEDURE


2.1 Design Decisions/Alternatives

All of the signal circuitry that was designed was designed around the LM741 Operational Amplifier.  This is because the LM741 op-amp is the most popular and thus cheapest of the op-amps available, with an additional benefit of being easy to use.  Using LM741s, the research of op-amp circuit types and the design of amplifiers reduced in complexity greatly.  

The choice of using a Xilinx FPGA was attributed to prior experience of using the particular hardware.  Having been students in ECE 249 (now 385), in which the PS/2 protocol was dealt with in a strictly device to host manner, it seemed to be a good choice as the learning curve for the language (VHDL) and the tools (Xilinx ISE, XSTOOLS, ModelSim) would be much easier to climb as opposed to using a microcontroller PIC.  However, a microcontroller such as the HC12 or a STAMP could have worked just as well.  In many stages of implementation, the use of a higher level programming language to model the PS/2 bus communication would likely have shortened development time.


2.2 Tools Used

We used several software and hardware tools that were available in the lab for our project.  In terms of software, we used Xilinx ISE, XSTOOLS, ModelSim, Cadence PSD, and Agilent Logic Analyzer.  Xilinx ISE and XSTOOLS were used for developing the VHDL code needed to run the FPGA mouse and to program the FPGA via the parallel port.  ModelSim and Agilent Logic Analyzer (in tandem with the hardware component) were used respectively in to monitor FPGA behavior in the development and testing stages.  See Appendix 5 for a trace given by the Logic Analyzer of the FPGA mouse as it synchronizes with the PS/2 controller.  Cadence PSD was used as a proof of concept for the signal circuitry, allowing us to draw circuit diagrams and simulate them with a variety of test sources.  In terms of hardware, the Agilent 54642A Oscilloscope was used in verification and debugging for both major blocks of the project.  Signal voltages were measured from all points within the signal circuitry as the primary means of debugging, and frequency measurements were used to measure appropriate switching times and duty cycles for the FPGA external clocks.
		

















3. DESIGN DETAILS

	
The design of the hands free mouse system is divided into two parts – the signal circuitry which captures the signal, and the FPGA mouse which processes the signal and communicates commands to the computer in the form of 3 byte mouse words.


3.1 Signal Circuitry

We will first overview and elaborate on the individual components of the signal circuitry, then move to VHDL components of the FPGA mouse.

Figure 3.1 shows an overall block diagram of how we implemented the signal circuitry.
[image: ]
Figure 3.1 - Block Diagram of Signal Circuitry

An input buffer was the first component of the signal circuitry, and its purpose was to minimize the power drawn from the electrodes.  Doing so, we could avoid loading effects, ensuring that our signal was reliable and its behavior would be predictable in the presence of many more circuit stages.

A difference amplifier was used to merge the different signals from left, right, up, and down into a left/right signal and an up/down signal.  Doing this reduced the number of components needed in lieu of processing each signal, and it also rejected noise common to each set of electrodes, originating from muscle twitches or anything else of that nature. 

A filter that would effectively cut out noise resulting from instruments and muscle vibrations was also designed.  The instruments have signal frequency of 60 Hz, and if this was incorporated into our signal, our signal would be unreadable.  The filter was also designed to be a Butterworth filter, since it has a maximally flat pass band and a sharper cutoff than other types of filters.  

The inverting amplifier next is used to amplify the output of the filter to the point at which the swing is about 500 mV in either direction, allowing for finer adjustments via a summer circuit.

The summer circuit is used to add a DC voltage to the incoming signal.  Since the electrodes have a natural DC bias associated with them which drifts either in the positive or negative direction, the summer circuit is used to negate this and keep the signal centered at approximately zero volts when the user is looking in the neutral position.

Inverting and non-inverting amplifiers are then used in tandem with rectifiers to break a single left/right or up/down signal into two separate 0-5 V logic signals that represent left and right, or up and down.

A more detailed description accompanied with figures and equations follows.

[image: ]
Figure 3.2 - Input Buffer Schematic
Figure 3.1 shows the schematic of the input buffer.  The buffer has a high input resistance, but a low output resistance, so that there is no loss of signal.  The buffer circuit is designed for unity gain.


	 	(3.1)

Equation 3.1 shows the calculation for determining the gain of the buffer.  As can be seen, matching the resistors will result in unity gain.  

[image: ]
Figure 3.3 - Difference Amplifier Circuit

The next component is the difference amplifier.  The difference amplifier is used to amplify the difference between each set of electrodes.  Figure 3.2 shows the schematic of the difference amplifier that is used in the circuit.  The amplifier was designed by matching the two input resistances and matching the two feedback resistances.  By doing this, the gain of the circuit reduces to that of an inverting amplifier, calculated as shown in Eqn. 3.2.


	= -10 V/V	(3.2)

The difference amplifier will help to reject common signals (when both input voltages are the same), which is beneficial because it will eliminate noise from heartbeats and other muscle vibrations.

[image: ]
Figure 3. 4 - 4th Order Butterworth Filter

The 4th order Butterworth Filter is the next component to the signal circuitry.  Figure 3.3 shows that the filter is actually two 2nd order filters cascaded in series.  The transfer function for the filter is given by:


		(3.3)

Where Avo is the gain of the filter, and B(s) is the binomial depending on the order of the filter.  Since two second order filters are being used, the binomial is given as


		(3.4)

The gain is determined from this binomial, being 


	 = 1.586 V/V	(3.5)

Since two second order filters are being cascaded together, the total gain is 


	= 2.515 V/V	(3.6)

Using the gain equation of a non-inverting amplifier, R2 is arbitrarily chosen as 10 kΩ, meaning the feedback resistance must be 5.86 kΩ.  Additionally, we chose the cutoff frequency to be around 33 Hz.  Using Eqn. 3.7, and choosing R to be 10 kΩ, we can determine the capacitance to be 0.47 μF [1].


		(3.7)

The frequency of the filter can be seen in Figure 3.4.  As can be seen, given a test signal of 1 V peak to peak, the output voltage in the pass band was about 2.5 V peak to peak.  Also, the sharp cutoff occurs around 30Hz, showing the filter behaved as desired.  

[image: ]
Figure 3.5 - Frequency Response of Filter

The next component provides the largest amplification for the input signal.  Figure 3.5 shows the inverting amplifier of the up/down circuitry.  
[image: ]
Figure 3.6 - Large Inverting Amplifier

The gain for this circuit is calculated using Equation 3.9, producing a gain of 
-68.3 V/V for the up/down circuit.  For the left/right circuitry, the feedback resistor is only 66 kΩ, creating a gain of -56.6 V/V. The reason for the two different amplifications is due to the electrode placement.  The signal is stronger for the left/right circuit because the electrodes can be closer to the eye.  However, for the up/down circuit, the electrodes are much farther away from the eye, and must read the signal through bone, resulting in the need for larger amplification.  

[image: ]
Figure 3.7 - Summer Circuit Schematic

Figure 3.6 is the schematic for the summer circuit, the next stage in the signal circuitry.  The summer circuit is actually a non-inverting amplifier with an averaging circuit as the input.  A potentiometer is used so that the voltage added to the signal can be adjusted accordingly, from -12 to 12 V.  As the averaging circuit contains two signals, their sum is divided by two.  Thus, we design the non-inverting amplifier to have a gain of two, providing unity gain at the output of the summer circuit.     

The final stages of the signal circuitry isolate and provide the final amplifications necessary for the circuit.  This stage is composed of an inverting and non inverting amplifier.  These amplifiers receive their signals from the summer circuit.  Figure 3.7 shows these amplifiers, whose outputs are connected to a rectifier. 
[image: ]
Figure 3.8 - Inverting and Non-inverting Amplifier and Rectifiers

Using the gain equations for inverting amplifier (Eqn. 3.9) and non-inverting amplifier (Eqn. 3.10):


	 	(3.9)


	 	(3.10)

where R2 represents feedback resistance, and R1 refers to the resistance between input and inverting terminal or between the inverting terminal and ground, we arrive at an inverting gain of -10 V/V, and a non-inverting gain of 11 V/V.  The purpose of the rectifier is to eliminate the negative portion of the signal, so that only positive high voltages are outputted to the FPGA.  An entire schematic for the signal circuitry can be found in Appendix 3.  





3.2  FPGA mouse

The design of the FPGA mouse will now be discussed with a detailed block diagram, accompanied with explanations for each detailed block.  Then, a detailed descriptions and justifications of the two state machines will be provided.



[image: blkdiag]
Figure 3.9 – FPGA mouse component block diagram

The Master State machine in Figure 3.9 is a state machine that governs what the mouse is currently doing, e.g. sending a byte, listening for a byte, resetting itself, etc.  When the mouse needs to do a PS/2 bus transaction, the Master state machine will reset and enable the Send/Receive or “slave” State machine and wait for it to finish.  Once the master state machine detects that the slave has finished a byte transfer, it reads the return state of the slave and decides what the next master state of the mouse should be, such as sending a response or transitioning into another state.  A detailed state diagram of its operation is shown in Appendix 4, Figure 1.

The states have been compressed in the state diagram to avoid redundancy.  Init actually requires two byte transfers, ‘AA’ and ‘00’, and The response states are various states that respond to different command words from the computer, with varying byte lengths from 1-4 bytes of response information.  This state machine is driven at 180 Hz, ensuring that it is slower than the send/receive state machine, but fast enough to respond to bus states and also to ensure smooth cursor movement.

The Send/Receive state machine is in charge of handling bus transfers.  When idle, it constantly checks the bus for a Request To Send state, defined by the host pulling Clock low for 100ms, pulling Data low, and releasing Clock [4].  When the Send/Receive machine detects a Data low, it will start receiving data by routing the Data line into a shift register (without waiting for the Master), and return with a return code based on the input from the computer.  Its state diagram is pictured in Appendix 4, Figure 2.

When enabled by the master state machine, send/receive will send the current byte to send (which is stored in a latched 8 bit vector) to the computer by generating the appropriate PS/2 Clock and Data signals according to the specification explained in [4]. The odd parity bit is generated beforehand via combinational logic.  The inhibit signal is set when the send/receive state machine is currently outputting a byte, and the host inhibits communication by pulling the Clock low.  In this case, the mouse is required by specification to wait, and restart the “chunk” transfer (mouse word, response, acknowledgement byte) when clock is released.  The send/receive state machine is operated on a ~14 kHz frequency, which is within the range specified by the PS/2 specification.  

The Mouse Word Generator is a block of combinational logic that translates logic high and low from the signal circuitry into three byte mouse words, formatted as shown in Fig. 3.10.  

[image: mouseword]
Figure 3.10 – Mouse word bit specification


The X and Y overflow bits, the Middle and Right button bits are unused, and thus remain zero.  The Left Btn bit was just set to the value of the ‘Button’ signal, which was included in the VHDL as a possible extension of our project.  The Y sign bit is designated as set when the ‘Down’ signal is high and the ‘Up’ signal is low.  Defining the bit this way prevents simultaneous highs from changing the sign bit.  The X sign bit is defined exactly the same way, with ‘Down’ being replaced by ‘Left’, and ‘Up’ being replaced by ‘Right’.  

The X and Y movement bytes are just two’s complement versions of binary “one”.  When moving up/right, this is represented as “00000001”, when left/down, “11111111”.

The seven segment decoder is a very simple component that serves as a debugging aid.  Each state of the Master state machine outputs a 4-bit byte vector representing a hexadecimal digit, which is decoded and output on the onboard seven segment display on the prototyping board.

A special design note:  The interface of the PS/2 bus is specified as being open collector, which means the bus can only have two states: driven low, or high impedance [5].  When both sources are driving high impedance, the state on the bus is pulled high by a pullup resistor between Vcc and the signal.  This applies for both the Clock and Data signals in the PS/2 bus.  For more detail on how this is exactly used, see the actual code of the Send/Receive state machine (codenamed “sendbyte”), in Appendix 5.











4. DESIGN VERIFICATION


The actual testing of the device was very simple to perform.  Since the signal circuitry and FPGA mouse were completely separately developed, they were able to be tested independent of each other.  For the signal circuitry, preliminary tests were performed with a function generator, oscilloscope, and LEDs for easy visual confirmation, and for the FPGA mouse, the logic analyzer and LEDs were used.


4.1 Testing

The signal circuitry was tested using a function generator.  As each component was constructed, a test signal was introduced, and the output was observed on the oscilloscope.  Graphs showing the testing of each component of the circuit can be found in Appendix 2.  These tests verified that the theoretical gains were physically achieved.  Table 4.1 has a summary of these results, showing the gain at each stage, both theoretically and experimentally.

TABLE 4.1 – THEORETICAL VERSUS ACTUAL SIGNAL GAIN

	Device
	Input Buffer
	Diff. Amp
	Filter
	Big amp (Up / Down)
	Big amp (Left / Right)
	Summer Circuit
	Non-Inv Amp
	Inv Amp

	Theoretical Gain
	1 V/V
	-10 V/V
	2.515 V/V
	-68.3 V/V
	-56.6 V/V
	1 V/V
	11 V/V
	-10 V/V

	Actual Gain
	1.1 V/V
	~ -10 V/V
	2.8 V/V
	-70.7 V/V
	-55.2 V/V
	1.1 V/V
	9.4 V/V
	-10 V/V



The total Theoretical gain ranges from 14234.9 V/V to 18895.2 V/V.  The largest range for the actual gains was from 17579.7 V/V to 22515.9 V/V.  These gains were taken from the graphs in Appendix 2.

Appendix 2 also contains graphs that were obtained from an actual user wearing the electrodes.  These graphs show the directional movements of left, right, up, and down.  Something we found was that when a subject looks left, the up/down trace is triggered and moves slightly as well.  In order to solve this, we sent a slight amount of feedback of the ‘Left’ signal output into the up/down summer circuit.  Thus, the slight natural couplings of the signals have minimal impact on our functionality.  

Testing the FPGA mouse started with displaying the separate PS/2 data and clock signals on an LED array while running the state machine at very slow frequencies.  This was achieved by inserting extra capacitances into the 555 Timer schematic such that the frequency was around 1-2 Hz.  Approaching the testing process in this way, emulating host-to-device communication and watching for appropriate behavior became possible.  After rough testing by hand had exhausted its usefulness, the Agilent Logic Analyzer was used in conjunction with a live computer.  Taking traces of the bus signals, and deciphering the output, the communication on the bus could be interpreted and the state machines could be debugged in VHDL.  Test signals, which would be encoded into specific states of a state machine, were used to debug the flow of the states.  A sample trace, showing bus communication from initialization to enable, is shown in Appendix 5.  Once bus communication was complete, testing of the FPGA mouse was limited to pulling wires to 0 and +5 V, and watching the mouse cursor move accordingly on the computer screen.

When coupling the two subprojects together, there was only one small issue, which was the magnitude of the signal output from the signal circuitry, which could occasionally peak at 10 Volts.  As only 5 is needed (and recommended) for driving a logic ‘1’ on a pin, a voltage divider of ½ solved the problem.  Once this was set, the mouse began moving almost immediately according to eye movements.  As an indirect result, rejection of small output values due to minor DC drift of the electrode signal seemed to increase as well.


4.2 Conclusions

Appendix 2 also has some graphs measuring the noise in our circuit.  Our output signal after the summer circuit had an amplitude of approximately 0.75 V, the noise on that signal had an amplitude of about 15 mV.  Equation (4.1) gives the signal to noise ratio in decibels:

	S/N = 20 log10(Vs/Vn)	(4.1)

In our case, this is 33.979 dB.  This value is high enough to show that noise does not affect our results.  Additionally, most of the noise in our circuit comes from the wires itself, not from anything else.  The amplitude of the noise of the wires is about 10 mV, which is more the noise of the signal.  Thus, we can conclude that our circuit does an effective job of eliminating noise from the signal, without introducing more noise.






























5. COST


5.1 Parts and Labor

A final parts listing is included with tabulated costs in Table 5.1.

TABLE 5.1 PARTS LIST AND TOTAL COSTS
	Part
	Cost
	Number Used
	Total Cost

	LM741 Op-amp
	$0.99
	18
	$17.82

	Electrodes
	$45.00
	1 package
	$45.00

	3.3 kΩ
	$0.99
	16
	$15.84

	33  kΩ
	$0.99
	8
	$7.92

	10  kΩ
	$0.99
	24
	$23.76

	5.6 kΩ
	$0.99
	4
	$3.96

	270 Ω
	$0.99
	4
	$3.96

	0.47 μF
	$0.99
	8
	$7.92

	82 kΩ
	$0.99
	2
	$1.98

	66 kΩ
	$0.99
	2
	$1.98

	20 kΩ Potentiometer
	$1.29
	2
	$2.58

	IN4001 Diode
	$1.29
	4
	$5.16

	MV57164 Red LED array
	$0.29
	1
	$0.29


	MV54164 Green LED array
	$0.29
	1
	$0.29


	XSA-100 Prototyping Header
	$149.99
	1
	$149.99

	PS/2 Cable, Male-Male connectors
	$9.99
	1
	$9.99

	LM555 Timer IC
	$0.40
	2
	$0.80

	TOTAL PARTS
	
	
	$299.24





























Labor Costs, calculated as ideal hourly pay * actual hours worked * 2.5, amount to:

Vikas Gupta ($175/hr * 100 hours * 2.5) = $43,750

Nicolas Chang ($220/hr * 120 hours * 2.5) = $66,000

5.2 Total Cost

Total Costs = Parts Cost + Labor Cost = $110,049.24







6. CONCLUSIONS


6.1 Accomplishments

This semester, we were able to accomplish all that we set out to do.  Our demonstration on Tuesday, November 30th was a successful one, with our project being able to move the mouse via the eyes with an adequate amount of control and precision.  Also on that day, we demonstrated our own knowledge and conveyed our experience in developing the project.  


6.2 Uncertainties

The only uncertainty left that we have was how to counteract the DC bias drift of the electrodes.  The bias would shift either positively or negatively whenever the electrodes shifted, and the potentiometer at the summer circuit needed to be adjusted in order to ensure accurate reading of eye positions.  Actions such as talking, blinking, and even moving the head up and down would be enough to shift the 500-750 mV signal by 40-50 mV.   To negate this dc drift, complicated circuitry might be involved in order to sample the baseline and average the output of the summer circuit, and apply a calculated counter voltage to be fed back into the summer circuit.  


6.3 Future Work / Alternatives
	
There is much future work that could extend this project beyond its original specifications.  Mouse button emulation would be the most basic enhancement, as it is already functional at the FPGA mouse stage.  Duplicating circuitry for a single mouse signal should be all that is required to implement this feature.  Also, increasing reliability by removing the blink artifacts (the quick muscle contractions would cause the up/down signal to jump, triggering the “up” input) by implementing a filter with a lower cutoff frequency would be feasible.  

During the course of the semester, we only tested our electrodes and obtained readings from Vikas.  However, the amplifier gain that may be required to achieve a meaningful signal may change from person to person, and the circuitry could be modified to allow a variable amplifier gain.  We suggest a variable resistor in the design of the large inverting amplifier to facilitate this.  

Last but not least, future work would definitely include a PCB implementation of our circuit.  The circuitry for the signal amplification and filtering filled an entire breadboard, and having a smaller package would increase marketability greatly.









APPENDIX 1 – Electrode Placement

[image: electrode placement]
Figure 1 – Electrode Placement Diagram

In Fig. 1,  red circles represent the electrodes that will measure lateral eye movement.  The blue circles represent the electrodes that will measure vertical eye movement.  The black electrode is the common reference electrode.





















APPENDIX 2 – Signal Circuitry Test Graphs

[image: ]
Figure 1 – Oscilloscope Trace

Figure 1 shows an input signal of 500mV Peak-Peak (top trace), and the output of the Input Buffer as 500mV Peak-Peak (bottom trace).  This demonstrates the unity gain which is typical of a voltage follower acting as an input buffer..  


[image: ]
Figure 2 – Oscilloscope Trace

Figure 2 is a graph that shows the input signal of 500mV peak-peak (top trace) and the output of the Difference Amplifier as 5V peak-peak (bottom trace).  The bottom trace is inverted and has a gain of 10 V/V, which is what is expected.


[image: ]
Figure 3 – Oscilloscope Trace

Figure 3 shows the output of the filter, with the input of 500mV peak to peak at the input buffer (top trace), and the output taken after the 4th order filter (bottom trace, channel 2).  As can be seen, the total gain is about 28 V/V, which, when taking into account the diff amp, means the filter is producing a gain of around 2.8.  This is very close to the predicted gain of the filter.

[image: ]
Figure 4 – Oscilloscope Trace

Figure 4:   The input signal of 200mV peak to peak (top trace) is at the input of the isolated large inverting amplifier.  The output signal is taken after the big amplifier (bottom trace).  This amplifier produces a gain of approximately -70 V/V.  This trace was taken at the output of the up/down signal circuit amplifier, which explains the higher gain.

[image: ]
Figure 5 – Oscilloscope Trace

Figure 5 depicts the input and output of the inverting amplifier, using a test signal of 200 mV peak to peak (top trace).  As the graph shows, the gain is approximately -10 V/V, the desired result (bottom trace, channel 2).

[image: ]
Figure 6 – Oscilloscope Trace

[image: ]
Figure 7 – Oscilloscope Trace


Figure 6 demonstrates the gain on the last non-inverting amplifier stage.  A test signal of 200 mV peak to peak (top trace) is sent into the amplifier, resulting in a gain of 9.4 V/V.  The output is shown on the bottom trace (channel 2).  Figure 7 is the output of both rectifiers (final output) with a square wave input.  This graph is included to mainly show that no conflicting direction are simultaneously a logic high during operation.  

[image: ]
Figure 8 – Oscilloscope Trace with Electrode Input

Figure 8 shows the trace of both directional signals at their summer circuit stages with the eye direction changing in the order of left, right, left, right, straight, left, right, left, right, and straight.  The bottom trace shows up/down movement.  Compared to the left/right movement, the up/down is negligible and will be rejected by the FPGA mouse

[image: ]
Figure 9 – Oscilloscope Trace with Electrode Input

Figure 9 shows vertical movement on the bottom trace.  The subject looks straight, then up, down, up, down, then straight, up, down, up, down, and so on.  The left/right trace (top) is triggered also, but only very slightly.

[image: ]
Figure 10 – Oscilloscope Trace of output signal noise

[image: ]
Figure 11 – Oscilloscope Trace of Wire Antenna noise
























APPENDIX 3– Signal Circuitry Schematic

The following circuit depicted in Figure 1 represents one complete circuit, in this case representing the up/down circuit.  The same circuit is used for the left/right aspect, but with slightly different amplification at the large amplifier.  The circuit is driven by a voltage pulse source, which was used for initial simulations.
[image: ]
Figure 1 – PSpice Schematic

















APPENDIX 4 – Master and Slave State Diagrams

[image: mastermach]
Figure 1 - Master State Diagram with compress states




[image: slavemach]
Figure 2 - Send/Receive State Diagram with compress states


APPENDIX 5 – Successful Logic Analyzer PS/2 Bus Trace

 (
Figure 1 – Bus Transactions, Part 1 of 2
)	[image: wave1_Layer 1][image: wave2_Layer 1]
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Figure 2 – PS/2 Bus Transactions, Part 2 of 2
)[image: wave3_Layer 1][image: wave4_Layer 1]
Figures 1 and 2 depict a typical Logic Analyzer trace of the FPGA mouse negotiating synchronization with the PS/2 controller on the test computer.   Deciphering the hexadecimal command words, the host sends these commands in order:  F2, E8, 03, E6, EA, F3, 3C, F4, with the FPGA mouse responding correctly with acknowledgements and extra response bytes when necessary (FA, 00 for F2).  
From [4], we show the meanings of each of the codes in the trace:

F2:  	Get Device ID 
E8, 03:	Set Resolution, 8 counts/mm
E6:  	Set Scaling 1:1
EA:  	Set Stream Mode
F3, 3C: 	Set Sample Rate, 60 samples/sec
F4:	Enable mouse (begin sending mouse data)


APPENDIX 6 - VHDL Code for FPGA mouse

Main Block – Master and Slave State Machines, and assorted combinational logic processes
library IEEE;					  
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity fpgamouse is
	Port (clk 	: in std_logic;	     -- fast clk, ~30kHz
          	 slowclk 	: in std_logic;      -- slow clk, ~300 kHz
           psclk 	: inout std_logic;     -- ps/2 clock
           psdata 	: inout std_logic;    -- ps/2 data
		statesdone : out std_logic;
		inhibit_out : out std_logic;
		Left 	: in std_logic;
          Right 	: in std_logic;
          Up 		: in std_logic;
          Down 	: in std_logic;
          Button 	: in std_logic;
		testsignal : out std_logic;
		displayout : out std_logic_vector(6 downto 0);
		psclko 	: out std_logic;
		psdatao 	: out std_logic;
          reset 	: in std_logic);
end fpgamouse;

architecture Behavioral of fpgamouse is
component SSDEC is
    Port ( d : in std_logic_vector(3 downto 0);
           s : out std_logic_vector(6 downto 0));
end component SSDEC;

component bitshift8 is
   Port ( Shift_In : in std_logic;
          Data_Out : out std_logic_vector(7 downto 0);
          clk : in std_logic;
          enable : in std_logic);
end component bitshift8;

component mw_gen is
    Port ( Left : in std_logic;
           Right : in std_logic;
           Up : in std_logic;
           Down : in std_logic;	  
    Enable : in std_logic;
           Clk : in std_logic;
           Button : in std_logic;
           mouse_one : out std_logic_vector(7 downto 0);
           mouse_two : out std_logic_vector(7 downto 0);
           mouse_three : out std_logic_vector(7 downto 0));
end component mw_gen;

type cntrl_state is (
rs,
one,two,three,four
);
type sendbyte_state is (
send_byte_init, -- idle
send_start_init_high,
send_start_low, send_start_high,
send_zero_low, send_zero_high,
send_one_low, send_one_high,
send_two_low, send_two_high,
send_three_low, send_three_high,
send_four_low, send_four_high,
send_five_low, send_five_high,
send_six_low, send_six_high,
send_seven_low, send_seven_high,
send_parity_low, send_parity_high,
send_stop_low, finished_send,

rcv_zero_low, rcv_zero_high,
rcv_one_low, rcv_one_high,
rcv_two_low, rcv_two_high,
rcv_three_low, rcv_three_high,
rcv_four_low, rcv_four_high,
rcv_five_low, rcv_five_high,
rcv_six_low, rcv_six_high,
rcv_seven_low, rcv_seven_high,
rcv_parity_low, rcv_parity_high,
rcv_stop_low, rcv_stop_high,
resp_ack_low, finished_rcv
);
type flow_state is (
rs, init_one, init_one_start, init_two,init_two_start,
listenprep,listen,
statreq_zero,statreq_zero_start,
statreq_one,statreq_one_start,
statreq_two,statreq_two_start,
statreq_three,statreq_three_start,
setuprespond,
setuprespond_start,
gen_resp,gen_resp_start,
gdid_one, gdid_one_start,
gdid_two,gdid_two_start,	 
resetprep,resetprep_start,
send_mousedata_one, send_mousedata_one_start,
send_mousedata_two,send_mousedata_two_start,
send_mousedata_three, send_mousedata_three_start,
ready, trap
);

signal state : flow_state := rs; 
signal next_state : flow_state;
signal sendstate : sendbyte_state := send_byte_init; 
signal next_sendstate : sendbyte_state;
signal testsignal_int : std_logic := '0';
signal byte_to_send : std_logic_vector(7 downto 0) := "00000000";
signal byte_we_got : std_logic_vector(7 downto 0);
signal resp_code : std_logic_vector(2 downto 0) := "000";
signal send_parity_bit : std_logic;
signal restart : std_logic;
signal Shift_En : std_logic;
signal Shift_In : std_logic;
signal block_done : std_logic;
signal inhibit : std_logic;
signal ledout : std_logic_vector(3 downto 0);
signal en_send_byte : std_logic;
signal receive_byte : std_logic;
signal need_response : std_logic;
signal return_state : std_logic_vector (2 downto 0) := "000"; -- the slave return code
signal mousedata_one : std_logic_vector( 7 downto 0);
signal mousedata_two : std_logic_vector (7 downto 0);
signal mousedata_three : std_logic_vector(7 downto 0);
begin
display : SSDEC	   -- external elements
  port map(d=>ledout,s=>displayout);
shifter : bitshift8
  port map(clk=>clk, enable=>Shift_En, Shift_In => Shift_In, Data_Out => byte_we_got);
mousewords : mw_gen
  port map(Left=>Left, Right=>Right,Up=>Up,Down=>Down,Enable=>testsignal_int,Button=>Button,Clk=>clk,mouse_one => mousedata_one,mouse_two=>mousedata_two,mouse_three=>mousedata_three);

sendbyte_process : process (clk,restart,Reset)
begin
    if ((restart = '1')or(Reset = '1')) then -- Reset
    	     sendstate <= send_byte_init;
    else
    --  if (en_send_byte = '1') then
	   if rising_edge(clk) then
	       sendstate <= next_sendstate;
	    else 
	       sendstate <= sendstate;
        end if;
--	 end if;
    end if;
end process;

flow_process : process (slowclk) 
begin
    if (Reset = '1') then -- Reset
    	     state <= rs;
    else
	  if rising_edge(slowclk) then
	      state <= next_state;
       else
	      state <= state;
       end if;
    end if;
end process;



assign_flow_outputs: process(state)
begin
     case state is
	   when rs =>
	       ledout <= "0000";
	       byte_to_send <= "00000000";
	       restart <= '1';
		  en_send_byte <= '0';  		   
		  return_state <= "001";
		  testsignal_int <= '0';
        when init_one =>
	   	  ledout <= "0001";
		  byte_to_send <= "10101010"; -- xAA
		  en_send_byte <= '0';
		  restart <= '1';			   
		  return_state <= "001";	 
		  testsignal_int <= '0';
        when init_one_start =>
	   	  ledout <= "0001";
	       byte_to_send <= "10101010"; 
	       en_send_byte <= '1';
	       restart <= '0';		   
		  return_state <= "001";	  
		  testsignal_int <= '0';
        when init_two =>
	       ledout <= "0001";
		  byte_to_send <= "00000000"; -- x00
		  en_send_byte <= '0';
		  restart <= '1';		   
		  return_state <= "010";	   
		  testsignal_int <= '0';
        when init_two_start =>
	       ledout <= "0001";
            byte_to_send <= "00000000";
	       en_send_byte <= '1';
	       restart <= '0';		   
		  return_state <= "010";	 
		  testsignal_int <= '0';
        when listenprep => 
	       ledout <= "0010";
		  byte_to_send <= "00000000"; -- x00
		  en_send_byte <= '0';
		  restart <= '1';		  
		  return_state <= "011";	
		  testsignal_int <= '0';
        when listen =>
		  ledout <= "0100";
		  byte_to_send <= "00000000"; -- x00
		  en_send_byte <= '0';
		  restart <= '0';		  
		  return_state <= "011";
		  testsignal_int <= '0';
        when setuprespond =>
	       ledout <= "0011";
	       restart <= '1';
		  byte_to_send <= "11111010"; -- xFA
		  en_send_byte <= '0';   
		  return_state <= return_state;
		  testsignal_int <= '0';
        when setuprespond_start =>	    
	       ledout <= "0011";
	       restart <= '0';
		  byte_to_send <= "11111010"; -- xFA
		  en_send_byte <= '1';
		  return_state <= return_state;  
		  testsignal_int <= '0';
        when statreq_zero =>	   
	       ledout <= "1000";
	       restart <= '1';
		  byte_to_send <= "11111010"; -- xFA
		  en_send_byte <= '0';
		  return_state <= return_state;  
		  testsignal_int <= '0';
	   when statreq_zero_start =>	   
	       ledout <= "1001";
	       restart <= '0';
		  byte_to_send <= "11111010"; -- xFA
		  en_send_byte <= '1';   
		  return_state <= return_state;  
		  testsignal_int <= '0';
        when statreq_one =>
	       ledout <= "1010";
	       restart <= '1';
		  byte_to_send <= "00000000"; -- x00
		  en_send_byte <= '0';
		  return_state <= return_state; 
		  testsignal_int <= '0';
	   when statreq_one_start =>
	       ledout <= "1011";
	       restart <= '0';
		  byte_to_send <= "00000000"; -- x00
		  en_send_byte <= '1';
		  return_state <= return_state;  
		  testsignal_int <= '0';
        when statreq_two =>	 
	       ledout <= "1100";
	       restart <= '1';
		  byte_to_send <= "00000010"; -- x02
		  en_send_byte <= '0';
		  return_state <= return_state; 
		  testsignal_int <= '0';
	   when statreq_two_start =>
	       ledout <= "1101";
	       restart <= '0';
		  byte_to_send <= "00000010"; -- x02
		  en_send_byte <= '1';
		  return_state <= return_state; 
		  testsignal_int <= '0';
        when statreq_three =>	    
	       ledout <= "1110";
	       restart <= '1';
		  byte_to_send <= "01100100"; -- x64
		  en_send_byte <= '0';
		  return_state <= return_state;
		  testsignal_int <= '0';
	   when statreq_three_start =>     
	       ledout <= "1111";
	       restart <= '0';
		  byte_to_send <= "01100100"; -- x64
		  en_send_byte <= '1';
		  return_state <= return_state;
		  testsignal_int <= '0';
        when gen_resp =>
	       ledout <= "0110";
	       restart <= '1';
		  byte_to_send <= "11111010"; -- xFA
		  en_send_byte <= '0';
		  return_state <= return_state; 
		  testsignal_int <= '0';
        when gen_resp_start =>	    
	       ledout <= "0110";
	       restart <= '0';
		  byte_to_send <= "11111010"; -- xFA
		  en_send_byte <= '1';
		  return_state <= return_state; 
		  testsignal_int <= '0';
         when gdid_one =>
	       ledout <= "1010";
	       restart <= '1';
		  byte_to_send <= "11111010"; -- xFA
		  en_send_byte <= '0';
		  return_state <= return_state; 
		  testsignal_int <= '0';
	   when gdid_one_start =>
	       ledout <= "1011";
	       restart <= '0';
		  byte_to_send <= "11111010"; -- xFA
		  en_send_byte <= '1';
		  return_state <= return_state;  
		  testsignal_int <= '0';
        when gdid_two =>	 
	       ledout <= "1100";
	       restart <= '1';
		  byte_to_send <= "00000000"; -- x00
		  en_send_byte <= '0';
		  return_state <= return_state;  
		  testsignal_int <= '0';
	   when gdid_two_start =>
	       ledout <= "1101";
	       restart <= '0';
		  byte_to_send <= "00000000"; -- x00
		  en_send_byte <= '1';
		  return_state <= return_state;  
		  testsignal_int <= '0';
        when resetprep =>
	       ledout <= "0110";
	       restart <= '1';
		  byte_to_send <= "11111010"; -- xFA
		  en_send_byte <= '0';
		  return_state <= "001";	   
		  testsignal_int <= '0';
        when resetprep_start =>	    
	       ledout <= "0110";
	       restart <= '0';
		  byte_to_send <= "11111010"; -- xFA
		  en_send_byte <= '1';
		  return_state <= "001";		
		  testsignal_int <= '0';
	   when ready =>		 
	       ledout <= "0101";
	       restart <= '1';
		  byte_to_send <= "00000000";
		  en_send_byte <= '0';
		  return_state <= "101";	    
		  testsignal_int <= '1';
         when send_mousedata_one =>
	       ledout <= "0110";
	       restart <= '1';
		  byte_to_send <= mousedata_one; -- xFA
		  en_send_byte <= '0';
		  return_state <= return_state; 
		  testsignal_int <= '0';
	   when send_mousedata_one_start =>
	       ledout <= "0110";
	       restart <= '0';
		  byte_to_send <= mousedata_one; -- xFA
		  en_send_byte <= '1';
		  return_state <= return_state;  
		  testsignal_int <= '0';
         when send_mousedata_two =>
	       ledout <= "0110";
	       restart <= '1';
		  byte_to_send <= mousedata_two; -- xFA
		  en_send_byte <= '0';
		  return_state <= return_state; 
		  testsignal_int <= '0';
	   when send_mousedata_two_start =>
	       ledout <= "0110";
	       restart <= '0';
		  byte_to_send <= mousedata_two; -- xFA
		  en_send_byte <= '1';
		  return_state <= return_state;  
		  testsignal_int <= '0';
         when send_mousedata_three =>
	       ledout <= "0110";
	       restart <= '1';
		  byte_to_send <= mousedata_three; -- xFA
		  en_send_byte <= '0';
		  return_state <= return_state; 
		  testsignal_int <= '0';
	   when send_mousedata_three_start =>
	       ledout <= "0110";
	       restart <= '0';
		  byte_to_send <= mousedata_three; -- xFA
		  en_send_byte <= '1';
		  return_state <= return_state;  
		  testsignal_int <= '0';
        when trap => 
	       ledout <= "1111";
	    -- ledout <= byte_we_got(3 downto 0);
	       restart <= '1';
		  byte_to_send <= "00000000";
		  en_send_byte <= '0';		    		   
		  return_state <= "001";		
		  testsignal_int <= '0';
     end case;
end process;


assign_sendbyte_outputs: process(sendstate,clk)
begin
     case sendstate is
	   when send_byte_init =>   -- i'm always in this state
                                 -- if im not sending anything 	
             psclk <= 'Z';
		   if (psclk = '0') then
		        inhibit <= '1';
			   block_done <= '0';
		        psclk <= 'Z';
		        psdata <= 'Z';
		        psdata <= '1';
             else
		       if (psdata <= '0') then
			     receive_byte <= '1';
                  else
			     receive_byte <= '0';
                end if;
		        inhibit <= '0';
			   block_done <= '0';		 
			   psclk <= 'Z';
			   psdata <= 'Z';
             end if;
        when send_start_init_high =>  	
	        receive_byte <= '0';
		   psclk <= 'Z';
		   psdata <= 'Z';
		   if (psclk = '0') then
		        inhibit <= '1';
			   block_done <= '0';
             else										   
		        inhibit <= '0';
			   block_done <= '0';		 
             end if;		  	       
        when send_start_low =>  	
	       receive_byte <= '0';
	       block_done <= '0';
	       psclk <= '0';
		  psdata <= '0';
	   when send_start_high =>  	
	        receive_byte <= '0';
	       psclk <= 'Z';
		   if (psclk = '0') then
		        inhibit <= '1';
			   block_done <= '0';
			                                       
             else										   
		        inhibit <= '0';
			   block_done <= '0';		          
             end if;
		  if (byte_to_send(0) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;		  	 
        when send_zero_low =>	 	
	       receive_byte <= '0';    
	       block_done <= '0';
	       psclk <= '0';
		  if (byte_to_send(0) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;		
	   when send_zero_high => 	
	        receive_byte <= '0';  
		   psclk <= 'Z';
		   if (psclk = '0') then
		        inhibit <= '1';
			   block_done <= '0';
			                                       
             else										   
		        inhibit <= '0';
			   block_done <= '0';		          
             end if;
		   if (byte_to_send(1) = '1') then
	 	    psdata <= 'Z';
	 	  else
		    psdata <= '0';
		  end if;		
        when send_one_low =>	 		
	       receive_byte <= '0';
	       block_done <= '0';
	       psclk <= '0';
		  if (byte_to_send(1) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;		
	   when send_one_high =>	 	 	
	       receive_byte <= '0';
	   	  psclk <= 'Z';
		   if (psclk = '0') then
		        inhibit <= '1';
			   block_done <= '0';
			                                       
             else										   
		        inhibit <= '0';
			   block_done <= '0';		          
             end if;
		   if (byte_to_send(2) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;		
        when send_two_low =>   	
	       receive_byte <= '0';
	       block_done <= '0';
	       psclk <= '0';
		  if (byte_to_send(2) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;	
	   when send_two_high =>	 	 	
	       receive_byte <= '0';
	   	  psclk <= 'Z';
		  if (psclk = '0') then
		        inhibit <= '1';
			   block_done <= '0';
            else
		       inhibit <= '0';
		       block_done <= '0';
            end if;
		  if (byte_to_send(3) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;	
        when send_three_low =>   	
	       receive_byte <= '0';
	       block_done <= '0';
	       psclk <= '0';
		  if (byte_to_send(3) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;	
	   when send_three_high => 	
	       receive_byte <= '0';
	   	  psclk <= 'Z';
		  if (psclk = '0') then
		        inhibit <= '1';
			   block_done <= '0';
            else
		       inhibit <= '0';
		       block_done <= '0';
            end if;
		  if (byte_to_send(4) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;	
        when send_four_low =>	 	
	       receive_byte <= '0'; 
	       block_done <= '0';
	       psclk <= '0';
		  if (byte_to_send(4) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;	
	   when send_four_high =>   
	       receive_byte <= '0';
	   	  psclk <= 'Z';
		  if (psclk = '0') then
		        inhibit <= '1';
			   block_done <= '0';
            else
		       inhibit <= '0';
		       block_done <= '0';
            end if;
		  if (byte_to_send(5) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;	
        when send_five_low =>	   	
	       receive_byte <= '0';
	       block_done <= '0';
	       psclk <= '0';
		  if (byte_to_send(5) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;	
	   when send_five_high =>    	
	       receive_byte <= '0';
	   	  psclk <= 'Z';
		  if (psclk = '0') then
		        inhibit <= '1';
			   block_done <= '0';
            else
		       inhibit <= '0';
		       block_done <= '0';
            end if;
		  if (byte_to_send(6) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;	
        when send_six_low =>	  	
	       receive_byte <= '0';
	       block_done <= '0';
	       psclk <= '0';
		  if (byte_to_send(6) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;	
	   when send_six_high =>	    	
	       receive_byte <= '0';
	   	  psclk <= 'Z';
		  if (psclk = '0') then
		        inhibit <= '1';
			   block_done <= '0';
            else
		       inhibit <= '0';
		       block_done <= '0';
            end if;
		  if (byte_to_send(7) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;	
        when send_seven_low =>  	
	       receive_byte <= '0';
	       block_done <= '0';
	       psclk <= '0';
		  if (byte_to_send(7) = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;	
	   when send_seven_high =>  
	       receive_byte <= '0'; 
	   	  psclk <= 'Z';
		  if (psclk = '0') then
		        inhibit <= '1';
			   block_done <= '0';
            else
		       inhibit <= '0';
		       block_done <= '0';
            end if;
		  if (send_parity_bit = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;	
        when send_parity_low =>  		
	       receive_byte <= '0'; 
	       block_done <= '0';
	       psclk <= '0';
		  if (send_parity_bit = '1') then
		    psdata <= 'Z';
		  else
		    psdata <= '0';
		  end if;	
	   when send_parity_high =>   
	       receive_byte <= '0';
	   	  psclk <= 'Z';
		  psdata <= 'Z';
		  if (psclk = '0') then
		        inhibit <= '1';
			   block_done <= '0';
            else
		       inhibit <= '0';
		       block_done <= '0';
            end if;
        when send_stop_low =>	    	
	       receive_byte <= '0';
	       block_done <= '0';
	       psclk <= '0';
		  psdata <= 'Z';			    
        when finished_send =>	  	
	       receive_byte <= '0'; 
	       psclk <= 'Z';
		  psdata <= 'Z';
		  block_done <= '1';

       when rcv_zero_low =>	
	      Shift_In <= psdata;
		 Shift_En <= '0';	  
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= '0';
		 psdata <= 'Z';
	   when rcv_zero_high =>	 	  
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= 'Z';
		 psdata <= 'Z'; 	
	      Shift_In <= psdata;   -- we shift in the middle
		 Shift_En <= '1';       -- of the cycle
        when rcv_one_low =>		  
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= '0';
		 psdata <= 'Z';   	
	      Shift_In <= psdata;
		 Shift_En <= '0';
	   when rcv_one_high => 	  
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';	
	      psclk <= 'Z';
		 psdata <= 'Z';	
	      Shift_In <= psdata;
		 Shift_En <= '1';
        when rcv_two_low =>  		  
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= '0';
		 psdata <= 'Z';     	
	      Shift_In <= psdata;
		 Shift_En <= '0';
	   when rcv_two_high => 	  
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';	
	      psclk <= 'Z';
		 psdata <= 'Z';   	
	      Shift_In <= psdata;
		 Shift_En <= '1';
        when rcv_three_low =>		
	      byte_we_got <= byte_we_got;	  
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= '0';
		 psdata <= 'Z';    	
	      Shift_In <= psdata;
		 Shift_En <= '0';
	   when rcv_three_high =>	  
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';	
	      psclk <= 'Z';
		 psdata <= 'Z';    	
	      Shift_In <= psdata;
		 Shift_En <= '1';
        when rcv_four_low => 		  
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= '0';
		 psdata <= 'Z';  	
	      Shift_In <= psdata;
		 Shift_En <= '0';
	   when rcv_four_high =>		  
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= 'Z';
		 psdata <= 'Z';    	
	      Shift_In <= psdata;
		 Shift_En <= '1'; 
        when rcv_five_low => 		  
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= '0';
		 psdata <= 'Z';    	
	      Shift_In <= psdata;
		 Shift_En <= '0';
	   when rcv_five_high => 	  
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';	
	      psclk <= 'Z';
		 psdata <= 'Z';    	
	      Shift_In <= psdata;
		 Shift_En <= '1';  
        when rcv_six_low =>		  
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= '0';
		 psdata <= 'Z';    	
	      Shift_In <= psdata;
		 Shift_En <= '0';
	   when rcv_six_high =>		  
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= 'Z';
		 psdata <= 'Z';   	
	      Shift_In <= psdata;
		 Shift_En <= '1';	
        when rcv_seven_low =>		
		 receive_byte <= '1';  
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= '0';
		 psdata <= 'Z';	   	
	      Shift_In <= psdata;
		 Shift_En <= '0';
	   when rcv_seven_high =>	  
		 receive_byte <= '1'; 
	      inhibit <= '0';
		 block_done <= '0';	
	      psclk <= 'Z';
		 psdata <= 'Z';    	
	      Shift_In <= psdata;
		 Shift_En <= '1';  
        when rcv_parity_low =>  	
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= '0';
		 psdata <= 'Z';      	
	      Shift_In <= psdata;
		 Shift_En <= '0';
	   when rcv_parity_high => 	 
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';	
	      psclk <= 'Z';
		 psdata <= 'Z';    	
	      Shift_In <= psdata;
		 Shift_En <= '0';
        when rcv_stop_low =>	 	 
		 receive_byte <= '1';
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= '0';
		 psdata <= 'Z';  	
	      Shift_In <= psdata;
		 Shift_En <= '0';
        when rcv_stop_high =>	 	
		 receive_byte <= '1'; 
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= 'Z';
		 psdata <= '0';   	
	      Shift_In <= psdata;
		 Shift_En <= '0';
        when resp_ack_low =>		  
		 receive_byte <= '1'; 
	      inhibit <= '0';
		 block_done <= '0';
	      psclk <= '0';
		 psdata <= '0';   	
	      Shift_In <= psdata;
		 Shift_En <= '0';
        when finished_rcv =>		 
		 receive_byte <= '1';
	      inhibit <= '0';
		 need_response <= '1';
		 block_done <= '1';
	      psclk <= 'Z';
		 psdata <= 'Z';   	
	      Shift_In <= psdata;
		 Shift_En <= '0';

     end case;  
end process;		


sendbyte_next_state: process (sendstate)
begin
     case sendstate is
	   when send_byte_init =>
	      if (receive_byte = '1') then
		 next_sendstate <= rcv_zero_low;	 -- RTS state detected, 
		 else	                          --  begin immediate receive byte
		 if (en_send_byte = '1') then		    -- master is telling us to send
	        next_sendstate <= send_start_init_high;  -- we sends.
		 else 
		   next_sendstate <= send_byte_init;
           end if;
		 end if;
	   when send_start_init_high =>
	      if (inhibit = '0') then 
	      next_sendstate <= send_start_low;
		 else
		 next_sendstate <= send_byte_init;
           end if;
        when send_start_low =>
	      next_sendstate <= send_start_high;
	   when send_start_high =>		    
	      if (inhibit = '0') then
	      next_sendstate <= send_zero_low;
		 else
		 next_sendstate <= send_byte_init;
           end if;
        when send_zero_low =>
	      next_sendstate <= send_zero_high;
	   when send_zero_high =>	
	      if (inhibit = '0') then
	      next_sendstate <= send_one_low;  
		 else
		 next_sendstate <= send_byte_init;
           end if;
        when send_one_low =>
	      next_sendstate <= send_one_high;
	   when send_one_high =>	   
	      if (inhibit = '0') then
	      next_sendstate <= send_two_low;	
		 else
		 next_sendstate <= send_byte_init;
           end if;
        when send_two_low =>
	      next_sendstate <= send_two_high;
	   when send_two_high =>		 
	      if (inhibit = '0') then
	      next_sendstate <= send_three_low;	 
		 else
		 next_sendstate <= send_byte_init;
           end if;
        when send_three_low =>
	      next_sendstate <= send_three_high;
	   when send_three_high =>
	      if (inhibit = '0') then
	      next_sendstate <= send_four_low;
		 else
		 next_sendstate <= send_byte_init;
           end if;
        when send_four_low =>
	      next_sendstate <= send_four_high;
	   when send_four_high =>   
	      if (inhibit = '0') then
	      next_sendstate <= send_five_low;	 
		 else
		 next_sendstate <= send_byte_init;
           end if;
        when send_five_low =>
	      next_sendstate <= send_five_high;
	   when send_five_high =>  
	      if (inhibit = '0') then
	      next_sendstate <= send_six_low;  
		 else
		 next_sendstate <= send_byte_init;
           end if;
        when send_six_low =>
	      next_sendstate <= send_six_high;
	   when send_six_high =>	    
	      if (inhibit = '0') then
	      next_sendstate <= send_seven_low;	
		 else
		 next_sendstate <= send_byte_init;
           end if;
        when send_seven_low =>
	      next_sendstate <= send_seven_high;
	   when send_seven_high => 
	      if (inhibit = '0') then
	      next_sendstate <= send_parity_low;  
		 else
		 next_sendstate <= send_byte_init;
           end if;
        when send_parity_low =>
	      next_sendstate <= send_parity_high;
	   when send_parity_high => 
	      if (inhibit = '0') then
	      next_sendstate <= send_stop_low;	 
		 else
		 next_sendstate <= send_byte_init;
           end if;
        when send_stop_low =>
	      next_sendstate <= finished_send;
        when finished_send =>
	      next_sendstate <= finished_send;	


       when rcv_zero_low =>
	      next_sendstate <= rcv_zero_high;
	   when rcv_zero_high =>	
	      next_sendstate <= rcv_one_low;  
        when rcv_one_low =>
	      next_sendstate <= rcv_one_high;
	   when rcv_one_high =>	   
	      next_sendstate <= rcv_two_low;	
        when rcv_two_low =>
	      next_sendstate <= rcv_two_high;
	   when rcv_two_high =>		 
	      next_sendstate <= rcv_three_low;	 
        when rcv_three_low =>
	      next_sendstate <= rcv_three_high;
	   when rcv_three_high =>
	      next_sendstate <= rcv_four_low;
        when rcv_four_low =>
	      next_sendstate <= rcv_four_high;
	   when rcv_four_high =>   
	      next_sendstate <= rcv_five_low;	 
        when rcv_five_low =>
	      next_sendstate <= rcv_five_high;
	   when rcv_five_high =>  
	      next_sendstate <= rcv_six_low;  
        when rcv_six_low =>
	      next_sendstate <= rcv_six_high;
	   when rcv_six_high =>	    
	      next_sendstate <= rcv_seven_low;	
        when rcv_seven_low =>
	      next_sendstate <= rcv_seven_high;
	   when rcv_seven_high => 
	      next_sendstate <= rcv_parity_low;  
        when rcv_parity_low =>
	      next_sendstate <= rcv_parity_high;
	   when rcv_parity_high => 
	      next_sendstate <= rcv_stop_low;	 
        when rcv_stop_low =>
	      next_sendstate <= rcv_stop_high;
        when rcv_stop_high =>
	      next_sendstate <= resp_ack_low;
        when resp_ack_low =>
	      next_sendstate <= finished_rcv;
        when finished_rcv =>
	      next_sendstate <= finished_rcv;
     end case;
end process;

calculate_parity_of_send_byte: process(byte_to_send)
begin
   send_parity_bit <= byte_to_send(7) xor byte_to_send(6) xor byte_to_send(5) xor byte_to_send(4) xor byte_to_send(3) xor byte_to_send(2) xor byte_to_send(1) xor '1' xor byte_to_send(0);
end process;

--#  Respond to the "Reset" (0xFF) command with "0xFA" 
--   then goto the beginning of your program. 
--    (ie, send 0xAA, 0x00, then wait for the enable 
--     command before sending any movement/button data.)
--# Respond to the "Get Device ID" (0xF2) command with "0xFA, 0x00".
--# Respond to the "Status Request" (0xE9) command with "0xFA, 0x00, 0x02, 0x64".
--# Respond to all other commands with acknowledge (0xFA).
generate_byte_to_resp: process (byte_we_got, clk)
begin
   case byte_we_got is
      when "11110100" => -- F4 - clear to send (enable device)
	     resp_code <= "001";
	 when "11111111" =>	-- FF - please reset and send AA, 00 again
	     resp_code <= "010";
	 when "11110010" =>	-- F2 - Get device ID, FA, 00
	     resp_code <= "011";		 
	 when "11101001" =>	-- E9 - FA, 00, 02, 64
	     resp_code <= "100";	 
      when others =>
	     resp_code <= "101";	 
   end case;
end process;



flow_next_state: process(state,block_done, clk)
begin
      case state is
	    when rs=>
		     next_state <= init_one;
         when init_one =>
	          next_state <= init_one_start;
         when init_one_start =>
	          if (block_done = '1') then
			   if (receive_byte = '1') then	  -- if we receive a byte,
			     if (resp_code = "001") then	    -- check response codes
			        next_state <= setuprespond;
                     elsif (resp_code = "010")then
		   	        next_state <= resetprep;
                     elsif (resp_code = "101") then
			        next_state <= gen_resp;
                     elsif (resp_code = "100") then
			        next_state <= statreq_zero;
                     elsif (resp_code = "011") then
				   next_state <= gdid_one;
 			      else
			      next_state <= trap;		 -- unidentified resp code
                   end if;
                  else
 	           next_state <= init_two;		    -- no byte received, continue
			 end if;
			else 
			next_state <= init_one_start;	    -- not done sending yet
			end if;
         when init_two=>
	          next_state <= init_two_start;
         when init_two_start =>
	          if (block_done = '1') then
			 if (receive_byte = '1') then
			     if (resp_code = "001") then
			        next_state <= setuprespond;
                     elsif (resp_code = "010")then
		   	        next_state <= resetprep;
                     elsif (resp_code = "101") then
			        next_state <= gen_resp;
                     elsif (resp_code = "100") then
			        next_state <= statreq_zero; 
                     elsif (resp_code = "011") then
				   next_state <= gdid_one;
 			      else
			      next_state <= trap;
                   end if;
                  else
	          next_state <= listenprep;
			end if;
			else
			next_state <= init_two_start;
			end if;
         when listenprep=>
	          next_state <= listen;
         when listen=>
	        if (block_done = '1') then
		    if (resp_code = "001") then
			      next_state <= setuprespond;
               elsif (resp_code = "010")then
			      next_state <= resetprep;
               elsif (resp_code = "101") then
			      next_state <= gen_resp;
               elsif (resp_code = "100") then
			      next_state <= statreq_zero; 
               elsif (resp_code = "011") then
				   next_state <= gdid_one;
 			  else
			      next_state <= trap;
                 end if;
               else
			   next_state <= listen;
               end if;
        when setuprespond =>
	          next_state <= setuprespond_start;
	    when setuprespond_start => 
	          if (block_done = '1') then
	          next_state <= ready;
			else
			next_state <= setuprespond_start;
			end if; 
         when ready =>
	          next_state <= send_mousedata_one;
	    when trap =>
	          next_state <= trap;
         when gdid_one =>			 
	         next_state <= gdid_one_start;
	    when gdid_one_start =>
	          if (block_done = '1') then
	          next_state <= gdid_two; 
			elsif(inhibit = '1') then
			 next_state <= gdid_one;
			else
			next_state <= gdid_one_start;	  
			end if; 
	    when gdid_two =>			  
	         next_state <= gdid_two_start;
	    when gdid_two_start =>
	          if (block_done = '1') then
	            if(return_state = "001") then
			     next_state <= init_one;
                 elsif (return_state = "010") then
			     next_state <= init_two;
                 elsif (return_state = "101") then
			     next_state <= ready;
                 else
			     next_state <= listenprep;
                 end if;
			elsif(inhibit = '1') then
			 next_state <= gdid_one;
			else
			next_state <= gdid_two_start;	  
			end if; 
         when gen_resp =>
	         next_state <= gen_resp_start;
         when gen_resp_start =>
	          if (block_done = '1') then
                  if(return_state = "001") then
			       next_state <= init_one;
                  elsif (return_state = "010") then
		            next_state <= init_two;
                  elsif (return_state = "101") then
			       next_state <= ready;
                  else
			        next_state <= listenprep;
                  end if;
			else
			next_state <= gen_resp_start;
			end if; 
	    when statreq_zero =>
	         next_state <= statreq_zero_start;
	    when statreq_zero_start =>
	          if (block_done = '1') then
	          next_state <= statreq_one;
			elsif(inhibit = '1') then
			 next_state <= statreq_zero;
			else
			next_state <= statreq_zero_start;	  
			end if; 				  
	    when statreq_one =>			 
	         next_state <= statreq_one_start;
	    when statreq_one_start =>
	          if (block_done = '1') then
	          next_state <= statreq_two; 
			elsif(inhibit = '1') then
			 next_state <= statreq_zero;
			else
			next_state <= statreq_one_start;	  
			end if; 
	    when statreq_two =>			  
	         next_state <= statreq_two_start;
	    when statreq_two_start =>
	          if (block_done = '1') then
	          next_state <= statreq_three ;
			elsif(inhibit = '1') then
			 next_state <= statreq_zero;
			else
			next_state <= statreq_two_start;	  
			end if; 
	    when statreq_three =>			 
	         next_state <= statreq_three_start;
	    when statreq_three_start =>
	          if (block_done = '1') then
	          if(return_state = "001") then
			     next_state <= init_one;
                 elsif (return_state = "010") then
			     next_state <= init_two;
                 elsif (return_state = "101") then
			     next_state <= ready;
                 else
			     next_state <= listenprep;
                 end if;
			else
			next_state <= statreq_three_start;	  
			end if; 	   
         when resetprep =>			
	         next_state <= resetprep_start;
	    when resetprep_start =>
	          if (block_done = '1') then
	          next_state <= rs;
			else
			next_state <= resetprep_start;	 
			end if; 		  
	    when send_mousedata_one =>
	         next_state <= send_mousedata_one_start;
	    when send_mousedata_one_start =>
	        if (block_done = '1') then
	           next_state <= send_mousedata_two; 
		 	else
			next_state <= send_mousedata_one_start;	  
			end if;   
	    when send_mousedata_two =>
	         next_state <= send_mousedata_two_start;
	    when send_mousedata_two_start =>
	        if (block_done = '1') then
	           next_state <= send_mousedata_three; 
		 	else
			next_state <= send_mousedata_two_start;	  
			end if;  
	    when send_mousedata_three =>
	         next_state <= send_mousedata_three_start;
	    when send_mousedata_three_start =>
	        if (block_done = '1') then
	           next_state <= ready; 
		 	else
			next_state <= send_mousedata_three_start;	  
			end if;  
	end case;
end process;	
testsignal <= receive_byte;
inhibit_out <= byte_we_got(6);
psclko <= psclk;
psdatao <= psdata;
end Behavioral;

8 bit Command Word Shift Register:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity bitshift8 is
    Port ( Shift_In : in std_logic;
           Data_Out : out std_logic_vector(7 downto 0);
           clk : in std_logic;
           enable : in std_logic);
end bitshift8;

architecture Behavioral of bitshift8 is
signal register_value: std_logic_vector(7 downto 0) := "00000000";
begin
   operate_reg: process(Clk,enable,Shift_In)
   begin 
      if (falling_edge(Clk)) then
	     if (enable = '1') then
		   register_value <= Shift_In & register_value(7 downto 1);
          else
		   register_value <= register_value;
          end if;
      end if;
   end process;
Data_Out <= register_value;
end Behavioral;


Mouse Word Generator
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;


entity mw_gen is
    Port ( Left : in std_logic;
           Right : in std_logic;
           Up : in std_logic;
           Down : in std_logic;
		 Clk : in std_logic;
		 Enable : in std_logic;
           Button : in std_logic;
           mouse_one : out std_logic_vector(7 downto 0);
           mouse_two : out std_logic_vector(7 downto 0);
           mouse_three : out std_logic_vector(7 downto 0));
end mw_gen;

architecture Behavioral of mw_gen is
signal one_val: std_logic_vector(7 downto 0) := "00000000";
signal two_val: std_logic_vector(7 downto 0) := "00000000";
signal three_val: std_logic_vector(7 downto 0) := "00000000";
begin
process(Left,Right,Up,Down,Button,Clk) -- im sampling off the fast clk! :D :D :D Qxb7++ bitch
 begin 
   if (Enable = '1') then
      if (falling_edge(Clk)) then
	    one_val <=   "00" & (Down and not Up)& (Left and not Right) & "100" & Button;
         two_val <=   (Left and not Right) & (Left and not Right) & (Left and not Right) & (Left and not Right) & (Left and not Right) & (Left and not Right) & (Left and not Right) & (Left or Right); 
	    three_val <= (Down and not Up) & (Down and not Up) & (Down and not Up) & (Down and not Up) & (Down and not Up) & (Down and not Up) & (Down and not Up) & (Down or Up);
         

        else
		   one_val <= one_val;
		   two_val <= two_val;
		   three_val <= three_val;
        end if;
	 end if;
   end process;
mouse_one <= one_val;
mouse_two <= two_val;
mouse_three <= three_val;
end Behavioral;

Seven Segment Decoder
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity SSDEC is
    Port ( d : in std_logic_vector(3 downto 0);
           s : out std_logic_vector(6 downto 0));
end SSDEC;

architecture Behavioral of SSDEC is
begin
process (d)
begin
 case d is 
 when "0000"  =>
   s <= "1110111";
 when "0001"  =>	   
   s <= "0010010";
 when "0010"  =>	  
   s <= "1011101";
 when "0011"  =>
   s <= "1011011";
 when "0100"  =>
   s <= "0111010";
 when "0101"  =>
   s <= "1101011";
 when "0110"  =>
   s <=  "1101111";
 when "0111"  =>
   s <= "1010010";
 when "1000"  =>
   s <= "1111111";
 when "1001"  =>
   s <= "1110111"; 
 when "1010"  =>
   s <=  "1111110"; 
 when "1011"  =>
   s <= "0101111";
 when "1100"  =>
   s <= "1100101"; 
 when "1101"  =>
   s <= "0011111"; 
 when "1110"  =>
   s <= "1101101"; 
 when "1111" =>
   s <= "1101100";
 when others =>
   s <= "1111111";
 end case ;
 end process;
end Behavioral;

Port Assignments
NET "clk"  LOC = "P15"  ;
NET "displayout<0>"  LOC = "P67"  ;
NET "displayout<1>"  LOC = "P39"  ;
NET "displayout<2>"  LOC = "P62"  ;
NET "displayout<3>"  LOC = "P60"  ;
NET "displayout<4>"  LOC = "P46"  ;
NET "displayout<5>"  LOC = "P57"  ;
NET "displayout<6>"  LOC = "P49"  ;
NET "psclk"  LOC = "P94"  ;
NET "psdata"  LOC = "P93" ;
NET "reset"  LOC = "P77"  ;
NET "psclko"  LOC = "P83"  ;
NET "psdatao"  LOC = "P84"  ;
NET "testsignal" LOC = "P85";
NET "slowclk" LOC = "P18";
NET "Left" LOC = "P86";
NET "Right" LOC = "P87";
NET "Up" LOC = "P79";
NET "Down" LOC = "P80";
NET "Button" LOC = "P78";
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